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Abstract

Over-segments (i.e. superpixels) have been commonly
used as supporting regions for feature vectors and prim-
itives to reduce computational complexity in various im-
age analysis tasks. In this paper, we describe a structure-
sensitive over-segmentation technique by exploiting Lloyd’s
algorithm with a geodesic distance. It generates smaller su-
perpixels to achieve lower under-segmentation in structure-
dense regions with high intensity or color variation, and
produces larger segments to increase computational effi-
ciency in structure-sparse regions with homogeneous ap-
pearance. We adopt geometric flows to compute the
geodesic distances amongst pixels, and in the segmenta-
tion procedure, the density of over-segments is automati-
cally adjusted according to an energy functional that em-
beds color homogeneity, structure density and compact-
ness constraints. Comparative experiments with the Berke-
ley database show that the proposed algorithm outperforms
prior arts while offering a comparable computational effi-
ciency with fast methods, such as TurboPixels.

1. Introduction
Image over-segmentation has been widely applied in var-

ious computer vision pipelines, such as segmentation [37,
36, 11], recognition [13], tracking [28], localization [7] and
modeling [10, 26]. In these applications, over-segments
(also known as superpixels in [29]) represent small regions
with homogeneous appearance and conform to local im-
age structure, and thus they provide a better support for
region-based features than local windows. With superpixels
the computational cost significantly decreases especially for
probabilistic, combinatorial or discriminative approaches,
since the underlying graph is greatly simplified in terms of
graph nodes and edges.

The challenge of superpixels is that on one hand they
are required to reduce image complexity by locally group-
ing pixels respecting intensity boundaries, and on the other
hand they should avoid under-segmentation and maintain a
certain level of detailed structures. These two aspects con-
flict with each other, and various optimization techniques

have been adopted to make trade-offs, for example, the
mean shift algorithm [2], the normalized cuts [32], the lo-
cal viaration [6], the geometric flows [16] and the water-
shed [35, 21, 34],

Fig. 1 shows the segmentation results obtained using
Graph-based method [6], Lattice [22], N-Cuts [25, 15], Tur-
boPixels [16] and our method. Graph-based method [6]
lacks compactness constraints and may generate under-
segmentation with regions of irregular shapes and sizes.
The other methods employ compactness constraints and
markedly restrict under-segmentation. The advantage of
utilizing compactness has also been demonstrated in [16].

Lattice [22] generates superpixels by detecting vertical
or horizon strips, and it naturally maintains a grid structure
of regions. Later the authors combined scene shape prior
to achieve an adaptive lattice [24]. Further investigation of
lattice superpixel [23] is derived from global optimization.
The superpixel generation is initialized with a grid, and the
graph cut algorithm is adopted to iteratively optimize the
vertical and horizontal seams.

N-cuts-based superpixels [25, 15] are variations of the
normalized cuts algorithm by [32], in which the compact-
ness is guaranteed by normalizing the cut cost using edge
weights. However, the global optimization is computation-
ally costly, and the time complexity of the segmentation in-
creases greatly with the number of pixels and image size.

Recently, Levinshtein et al. proposed a geometric-flow-
based algorithm (i.e. TurboPixels) for superpixel segmen-
tation [16]. Starting from initial seeds regularly placed onto
the image, TurboPixels uses the level set method for super-
pixels’ evolution. It yields a lattice-like structure of com-
pact regions, and more importantly it is efficient especially
when compared with N-cuts-based over-segmentation.

A further observation in Fig. 1 shows that the density of
image contents often differs in different parts of the image,
given that there are a large diversity of scene layout and that
imaging process unavoidably introduces prospective distor-
tion. The over-segments of Lattice, N-Cuts and TurboPix-
els in Fig. 1 (b),(c)&(d) are too large to represent image
appearance and lead to under-segmentation in regions near
intensity boundaries, while the segments are rather small in
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Figure 1. Over-segmentations obtained with five algorithms: (a) Local variation [6], (b) Superpixel Lattice [22], (c) N-Cuts [32], (d)
TurboPixels [16] and (e) the method presented in this paper. The second row zooms in on the regions of interest defined by the white
rectangles.

homogeneous regions resulting in unnecessary overhead in
high-level applications. That says, superpixels with quasi-
uniform distribution is in a dilemma, since the number of
superpixels is hard to choose. This is also proven by several
methods that use multiple over-segments as a starting point
for further scene segmentation [18, 30].

A better image representation would be achieved when
the density of superpixels is assigned adaptively with re-
spect to the co-occurrence of image contents or “density” of
image structures. This motivates us to introduce a structure-
sensitive density function and to generate superpixels as re-
gions with similar sizes in terms of this density function.

The density function is also motivated by the follow-
ing analysis on similarity measure among pixels. A com-
monly used similarity measure is the Euclidean distance in
a high-dimensional space that is based on three components
of color and two image coordinates. The main disadvantage
of such measure is the irrelevance to the image contents in-
between: the measure remains the same no matter whether
there is a path along which the appearance transits smoothly
(see Fig. 2). It often leads to disconnection and irregularity
on segments’ shape and size. In order to avoid the above
flaws, the similarity measure in the proposed algorithm is
defined by the geodesic distance [27]. The aforementioned
density function forms the basis of the geodesic distance,
namely that the distance increment at a particular image
point becomes large if the local density is high, and vice
versa.

Most recently, the geodesic distance has been used for
interactive segmentation and matting in [1, 3, 9]. To the
best of our knowledge, however, it has never been used as
criteria for determining the distribution and magnitude of
superpixels in over-segmentation.

1.1. Overview

The proposed algorithm resembles Lloyd’s algo-
rithm [17] but with the geodesic distance defined in
Eqn. (1). It’s based on an energy functional (in Sec.2) that

Figure 2. Geodesic distance vs. Euclidean distance: Image con-
tents in-between could provide a crucial evidence for measuring
the similarity between two pixels.

embeds structure and compactness constraints. Fig. 3 shows
an overview of our system. The density of superpixels is
sensitive to image structure and changes adaptively during
the algorithm.

Given a user-specified amount of superpixels, the algo-
rithm first puts some seeds roughly in a lattice structure on
the image along with small disturbance in order to avoid the
placement on strong intensity boundaries. The seeds serve
as initial estimates of the superpixel centers.

The location of the centers and shape of each superpixel
keep changing in turn as the algorithm runs, and there are
two key components in this iterative approach. The first
one generates over-segments from the current set of centers.
The fast marching method [31] is employed to calculate the
geodesic distance and to generate a Voronoi diagram based
on the distance. It has high computational efficiency and
requires more restricted forms of the underlying velocity
function. Our velocity function is based on the structure
density with special care for satisfying the required forms.
The details of this part can be found in Sec. 3.1.

The second component refines the locations of the cen-
ters according to superpixels’ distribution and magnitudes.
The relocation is based on an energy minimization formu-
lation defined with the geodesic distance. Additional su-
perpixels are created by splitting existing ones when certain
conditions of their density are satisfied. The description of
this part is in Sec. 3.2.



Figure 3. The procedure of our algorithm: Initial seeds (S1) grow with the speed (S2) to form an over-segmentation (S3), and the centers
are relocated or split (S4) by certain criteria related by shape or size. In S4a the red“+” is the original places of center points and black “x”
is the recalculated places. In S4b the red “*” represents the seeds detected to be split and the yellow “x” is the newly generated seeds. The
arrows on graph illustrate the motion of particular seeds.

2. Problem Formulation via Geodesic Distance
Given an input image I(x), the goal is to over-segment

I(x) into dense small regions representing superpixels at
different locations. We assign a unique label to each super-
pixel and use L(x) to denote the label of the current pixel
x. Thus, all pixels belonging to the l-th superpixel Sl can
be detected by using Sl = {x|L(x) = l}.

As shown in Fig. 2, image contents in-between could
provide a crucial evidence for measuring the similarity
between two pixels. We exploit a geodesic distance
Dg(xi,xj) to define the similarity between two pixels xi
and xj on an image:

Dg(xi,xj) = min
Pxi,xj

∫ 1

0

D(Pxi,xj (t))‖Ṗxi,xj (t)‖dt, (1)

where Pxi,xj (t) is a path connecting the pixel xi,xj (for
t = 0 and t = 1 respectively). The density function D(x)
is used as the distance increment, and inspired by [16], it
takes the form as follows:

D(x) = e
E(x)
ν , E(x) =

‖∇I‖
Gσ ∗ ‖∇I‖+ γ

, (2)

where ν is a scaling parameter. E(x) is an edge measure-
ment which provides normalization of gradient magnitude
‖∇I‖ of color image. This allows weak but isolated edges
to have a significant effect on density. Gσ is the Gaussian
function with its standard deviation being σ. The parame-
ter γ guarantees that very weak intensity boundaries do not
effect too much in the density computation.

Since D(x) is a monotonically increasing function of
gradient magnitude which is large on edges, the geodesic
distance of a path across an intensity boundary is always
larger than that in a homogeneous region. Moreover, the
term D(x) produces a constant distance increment (i.e.
D(x) = 1 if E(x) = 0) in regions of homogeneous appear-
ance, and thus retains the minimum possible isoperimetric
ratio. This makes the superpixels compact so as to avoid
large under-segmentation when the image regions contain
little edge information.

With the geodesic distance Dg(xi,xj) defined in
Eqn. (1), the superpixels are required to be compact and
conform to image boundaries, which leads to the following
criterion:

Compactness : L(x) = argmin
l
Dg(cl,x), (3)

where cl denotes the center of the l-th superpixel.
With the compactness constraint, the distribution of the

centers {cl} uniquely determines the density and shapes
of superpixels, and hence the over-segmentation problem
could be formulated as an optimal quantization problem [8]
for computing centroidal Voronoi tessellations on the im-
age.

2.1. Energy Minimization

Besides the compactness constraints in Eqn. (3), we fur-
ther adapt the magnitudes of superpixels for better repre-
senting local structures on the image:

Structure : Al ≈ Al′ ,∀l 6= l′, with

Al =

∫
Sl

D(x)dx, (4)

where Al denotes the area of superpixel Sl.
From Eqn. (2), the density function D(x) is high in

the regions with much intensity variation and thus leads to
smaller area Sl on the image. This motivates us to define an
energy term:

Estructure =
∑
l

(Al −A)2, (5)

where A is the average of {Al}, which can be easily calcu-
lated by

∑
l Al
N =

∫
x
D(x)dx

N in which N is the total number
of superpixels specified by users.

Moreover, inspired by the robustness of recent clustering
methods using geodesic distance [5, 14], we penalize the
label inconsistency between a pixel and its closest center on
the image if their geodesic distance is small:

Eimage =
∑
l

∫
Sl

WxDg(cl,x)
2dx, (6)



where Wx is a weight function defined as e−Dg(cL(x),x)/ϕ.
Wx measures the probability that pixel x and its closest
center cL(x) have the same label based on their geodesic
distance Dg(cL(x),x). ϕ = 0.5 is a scaling parameter.

Etotal = Eimage + αEstructure, (7)

where α is a balancing factor. Thus, the superpixels {Sl}
are generated with the compactness constraint from a set of
centers {cl} and they optimize the total energy functional
that embeds image homogeneity and structure density.

3. Structure-sensitive Superpixels
Due to its highly non-convex properties, we choose to

use an iterative scheme to minimize the energy Etotal. The
optimization process is similar to Lloyd’s algorithm [17]
and converges to some local minimum. The convergency
and robustness of the algorithm has been elaborated by
Du et al. [4]. In our algorithm the centers {cl} and pixel
labels L(x) are alternatively updated in turn during the it-
erative procedure. Both of the two routines are designed
according to the energy functional in Eqn. (7), and their de-
scriptions are in Sec. 3.1& 3.2 respectively.

3.1. Over-segmentation with Known Centers

Given a set of centers {cl}, the goal in this step is to com-
pute local segments L(x) by the compactness constraint in
Eqn. (3) and energy functional in Eqn. (7).

In order to generate geodesic distances, we here employ
the fast marching method [31] for better computational ef-
ficiency since this over-segmentation step may get involved
several times during the outer iterations. Moreover, in our
configuration, the frontend of the evolving contour can only
move in the direction of the outward normal (i.e. the con-
tour expands rather than shrink), which fits well with the
restricted forms of the underlying velocity functions of the
fast marching.

The velocity function for calculating the geodesic dis-
tance in Eqn. (1) is defined as follows:

V (x) = D(x)−1, (8)

where D(x) is the density function defined in Eqn. (2).
With the above velocity function, we use the fast march-

ing method as the numerical solver for the boundary prob-
lems of the Eikonal equation,

V (x)‖∇Dg(cl,x)‖ = 1,

with Dg(cl, cl) = 0, ∀l. (9)

With Dg(cl,x) at hand, L(x) may be determined directly
through the compactness constraint in Eqn. (3). It can
be easily proven that Eimage in Eqn. (6) is minimized.

However, the minimization of Estructure in Eqn (5) is not
achieved.

Mathematically, it can be proven that the velocity Vs to
optimize Estructure is V (x)

(Al(d)−A)
∂Al(d)

∂d

, where d is short

for Dg(cl,x) and Al(d) represents the current area encir-
cled by the evolving contour. For efficiency, we simplify
Vs but keep it sensitive at final stages when Al(d) − A ap-
proaches 0, resulting in Vs(x) =

V (x)

Al(d)−A
· const. The ve-

locity Vl(x) for Etotal satisfies 1
Vl(x)

= 1
V (x) +

α
Vs(x)

, i.e.

Vl(x) = V (x)

1+α∗(Al(d)−A)
. To tolerate to errors in Al(d)’s

computation, we further use a Gaussian function to substi-
tute the denominator leading to the equation:

Vl(x, d) = V (x) ·G′σ′(max{0, Al(d)−A}), with

Al(d) =

∫
{x|x∈Sl,Dg(cl,x)<d}

D(x)dx, (10)

where G′σ′(·) denotes an un-normalized Gaussian function
with its standard deviation σ′ = A/α. Thus, in order to
minimize the total energy functional in Eqn. (7), we adopt
the following form for the Eikonal equation:

Vl(x, Dg(cl,x))‖∇Dg(cl,x)‖ = 1,

with Dg(cl, cl) = 0, ∀l. (11)

3.2. Center Refinement with Known Regions

Center Relocation Given a set of superpixels L(x), in
this step the centers {cl} relocate according to Eimage in
Eqn. (6). The location of each center should be updated by:

c′l = arg min
x′∈Sl

∫
Sl

WxDg(x
′,x)2dx. (12)

An exhaustive search as in [5] is computational costly and
infeasible for this iterative approach. Based on calculus, c′l
is a stationary point where the derivative of Eimage equals
to 0, which leads to:

∂Eimage
∂c′l

= 2

∫
Sl

WxDg(c
′
l,x)∇Dg(c

′
l,x)dx (13)

≈ 2

∫
Sl

WxDg(cl,x)
(x− c′l)

‖x− cl‖
dx = 0,

where we use cl to substitute c′l for computational conve-
nience. In the last line of the above inference equations, we
use (x−c′

l)
‖x−cl‖ as the approximation of ∇Dg(c

′
l,x), since the

resulting equation has a similar form as the computation of
the center of mass of the segment Sl with its center being
c′l and its mass equal to

∫
Sl\{cl}Wx

Dg(cl,x)
‖x−cl‖ dx. Thus, the

new center relocates to:

c′l =

∫
Sl\{cl}Wx

Dg(cl,x)
‖x−cl‖ xdx∫

Sl\{cl}Wx
Dg(cl,x)
‖x−cl‖ dx

. (14)



Iteration

E
n
e
rg
y

Figure 4. Algorithm convergence. The overall energy functional
decreases and the superpixels perform better with every iteration.

The experiments of overall energy in Fig. 4 also validate the
estimation of new center locations as the energy functional
keep decreasing during the iteration.
Center Splitting As mentioned in Sec. 1, one of the main
goals is to generate superpixels that are consistent with im-
age structure which leads that they are almost the same size
based on the density term (See Eqn. (4)).

Thus during the energy minimization process, given a su-
perpixel Sl whose area Al is large while its center cl shifts
little from last iteration, the algorithm splits the center cl
into two centers since the latter generated segments by the
new ones would produce a lower value of the energy func-
tional in Eqn. (7).

To this end, we define criteria to distinguish superpixels’
centers to be split and those to be relocated:

Cshape(cl) = max {EigV1
EigV2

, λStdl} > Tc;

Csize(cl) =
Al

A
> Ts, (15)

The splitting of centers is performed if either Cshape or
Csize is satisfied. Tc and Ts are thresholds, while Stdl
denotes the standard deviation of pixel colors within each
superpixel under normalized CIElab color space as in [33].
EigV1 and EigV2 are the first and second eigenvalue ob-
tained by the PCA [12] of the following 2× 2 matrix:∫

Sl\{cl}

Dg(cl,x)
2

‖x− cl‖2
(x− cl)(x− cl)

T dx. (16)

If either splitting criterion in Eqn. (15) is satisfied, two
new centers c′l,1 and c′l,2 are generated to split and replace
the current one cl by calculating:

c′l,1 =

∫
{x|x∈Sl,(x−cl)·n>0}

Dg(cl,x)
‖x−cl‖ xdx∫

{x|x∈Sl,(x−cl)·n>0}
Dg(cl,x)
‖x−cl‖ dx

,

c′l,2 =

∫
{x|x∈Sl,(x−cl)·n<0}

Dg(cl,x)
‖x−cl‖ xdx∫

{x|x∈Sl,(x−cl)·n<0}
Dg(cl,x)
‖x−cl‖ dx

, (17)

where n denotes the corresponding eigenvector of EigV1.
Moreover, in the rare cases that no splitting criteria is

met while demanded seeds number is not reached, we select
the largest few superpixels (10 in our implementation) to
perform the splitting.

3.3. Initialization and Termination

Initial Seeds Placement Similar to TurboPixels [16], we
place K initial seeds in a lattice formation such that the dis-
tance between neighbor seeds is roughly equal to

√
M/K,

where M is the total pixel number of the image. We also
perturb the seeds by moving away from the pixels with high
gradient magnitude to avoid strong intensity boundaries and
bad initialization for latter iteration.

Different from TurboPixels algorithm, we set K to be
a portion of the total amount of superpixels N (specified
by users). During the optimization process, additional su-
perpixels are generated by splitting existing ones until the
number of superpixels reaches N .

Termination Conditions We use the following termina-
tion conditions: 1) the change of energy between two suc-
cessive iteration steps is less than a threshold εE ; 2) the total
number of iterations exceeds the predefined number Nmax.

In the final stage, very small superpixels are detected
and removed, which is resulting in a small amount of unas-
signed pixels. The final segmentation is generated by the
over-segmentation (in Sec. 3.1) with the remaining centers.

3.4. Algorithm Complexity and Convergence

As the algorithm iteratively performs two routines in
turn, the time complexity of our algorithm isO((Tsegment+
Tcenter)NI), where Tsegment and Tcenter are the complex-
ities of the over segmentation in Sec. 3.1 and center refine-
ment in Sec. 3.2 respectively. NI is the total number of
iterations.

Let M denote the number of pixels on an image. The
complexity of the fast marching can be decreased to roughly
O(M) [38]. It can be also proven that Tcenter is O(M),
since the center refinement can be achieved by a single scan
of all pixels on an image. Thus, the complexity of the whole
algorithm becomes O(MNI).

Our experiments show that the algorithm mostly termi-
nates within 20-30 iterations. The number of centers in-
creases quickly at the first several iterations when over-
segments have larger sizes, which makes the energy func-
tional decreases rapidly. Fig. 4 shows the energy functional
decreasing with each iteration of the algorithm. The number
of iterations rarely exceeds Nmax = 30. With such a con-
straint, the complexity of the algorithm approaches O(M).
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Figure 5. Performance related to different portion of initial seeds:
(a) Under-segmentation Error (b) Boundary Recall (c) Time Cost.

4. Experimental Results
4.1. Implementation Details

In our experiments, the standard deviation σ and param-

eter γ in Eqn. (2) is set to σ =

√
M/N

2 and γ = 0.12,
where M is the total number of pixels in the image and N
is the user-specified number of superpixels. We set α = 1
in Eqn. (7) and Ts = 2, λ = 36, Tc = 4 in Eqn. (15).

For the setting of initial seeds number, Fig. 5 shows the
quantitative test (using criteria in Sec. 4.2) related to the ra-
tio between the number of initial seeds and that of user’s
requirement. As shown, a smaller fraction performs little
better but takes more time to converge. In experiments, we
set the initial seeds to N

4 , which generally ensures the min-
imum area Al in the first iteration larger than A.

We use Fast Marching Toolbox1 to compute geometric
flows. In the latter section, we evaluate the performance
of the proposed algorithm by comparing its accuracy and
running time with TurboPixels [16] and N-Cuts [32]. We
use Multiscale Normalized Cuts Segmentation Toolbox2 for
N-Cuts and TP3 for TurboPixels. All experiments are per-
formed on a quad-core 3.2GHz computer. The evaluation
is based on the BSD300 data set [20], which contains 100
test images and 200 training images with 481 × 321 (or
321 × 481) pixel resolution. The performance is averaged
over a random subset (20-30 images) of the test set as the
time cost is very high when testing N-cuts.

4.2. Quantitative Evaluation

As the compactness is important for avoiding under-
segmentation, we thus limit the comparison with TurboPix-
els and N-Cuts. We compare with these algorithms in fol-
lowing quantitative criteria.
Under-segmentation Error Under-segmentation Error
intuitively penalties the superpixels that do not overlap
tightly with a ground truth segmentation. Given a ground
truth segmentation into segments G1, ..., GK and a super-
pixel segmentation into superpiels S1, ..., SL, we quantify

1Fast Marching Toolbox is written by Gabriel Peyre (http://www.
mathworks.com/matlabcentral/fileexchange/6110).

2Multiscale Normalized Cuts Segmentation Toolbox Version 1.6
is written by Timothee Cour, Florence Benezit, and Jianbo Shi
(http://www.seas.upenn.edu/˜timothee/software/
ncut_multiscale/ncut_multiscale.html).

3TP implementation is written by Alex Levinshtein (http://www.
cs.toronto.edu/˜babalex/research.html).
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Figure 6. Performance comparison with TurboPixels and N-Cuts:
(a) Under-segmentation Error, and (b) Boundary Recall.

the under-segmentation error of a whole image as:

U =
1

M

 K∑
k=1

 ∑
{Sl||Sl∩Gk|>B}

Area(Sl)

−M
 , (18)

where Area(Sl) is the area of the superpixel, and M is the
total number of pixels. B is the minimum area of overlap-
ping and is set to be 5% of Area(Sl).

We average the value U across all test images and
all ground-truth segments, and obtained a comparison in
Fig. 6(a). As can be seen, our algorithm outperforms Tur-
boPixels and N-Cuts, especially with small number of su-
perpixels.
Boundary Recall A standard boundary recall measure-
ment is also adopted, which computes what fraction of the
ground truth edges fall within two pixel length from at least
one superpixel boundary. The comparison of the boundary
recall of TurboPixels, N-Cuts and our method is in Fig. 6(b).
Again, with small amount of superpixels, our method out-
performs the other two.
Time Cost As demonstrated in [16], TurboPixels is much
faster than N-Cuts. We thus conduct comparisons with Tur-
boPixels. In our experiments, the running time of the two
algorithms is tested with respect to image size and super-
pixel number.

The result in Fig. 7(a) shows that our algorithm termi-
nates within a linear time with respect to the image size,
which has also been proven in Sec. 3.4. Two algorithms
are comparable in time with each other. Fig. 7(b) shows
the running time when increasing superpixel density under
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Figure 7. Timing comparison with TurboPixels (a) Running time
with respect to image size (b) Running time with respect to the
density of superpixels.
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(a) (b) (c) (d)
Figure 8. Comparison between (a) our algorithm and (b) TurboPixels on a variety of images with a zoom in of regions of interest by the
white rectangles in column (c) and (d) respectively.

a constant image size (241 × 161) in our experiments. The
running time of our algorithm slightly increases. This is
mainly because more iterations are required for minimiza-
tion with a larger number of superpixels. As demonstrated
in Sec. 3.4, the running time is a linear function with respect
to number of iterations.

4.3. Qualitative Results

Fig. 8 shows a qualitative comparison of the superpixel
obtained by TurboPixels and our method in a variety of
images from BSD300. The number of superpixels gener-
ated by TurboPixels and our method is almost the same.
As can be noticed, the density of superpixels provided by
our method is pretty well consistent with the image con-
tents: the density is low in the homogenous regions and high
near high intensity boundaries. This makes the superpixel
boundaries respect salient edges better.

Similar with the priori art [16], our algorithm is not con-
strained to the image-gradient-based density functions. Dif-

Figure 9. Qualitative results of our method using gradient-based
(middle) and combined with Pb-based (right) affinity functions.

ferent kinds of refined measures can be combined in the ve-
locity function for computing the geodesic distance. Fig. 9
shows the performance of our algorithm when combined
with the Pb-based [19] boundaries. The edges between the
tiger and background are much better captured.

5. Application
Besides of the numerous applications as mentioned in

Sec. 1, superpixels are also considered as a compact rep-
resentation for image compression. Our algorithm gener-
ates better visual effects when compared with [16] due to
the structure-sensitive distribution of superpixels. Fig. 10
shows comparative results using 500 superpixels. The color
of each superpixel is approximated by three polynomials
(one per channel). With a limited number of superpixels,
our algorithm produces better details and approaches the
quality of the original image.

6. Conclusion
We describe a structure-sensitive over-segmentation al-

gorithm for computing superpixels on an image. It greatly
limits under-segmentation by considering the homogene-
ity of image appearance, density of image contents and
compactness constraints. The over-segmentation is formu-
lated as an energy minimization with the geodesic distance,



(a) (b) (c) (d) (e)
Figure 10. Quadratic fit to the color of the original image(a) within
each superpixel got by TurboPixels(b) and our method(c). And a
zoom-in on selected region showed by (c) and (d) respectively.

and the optimal solution is obtained via geometric flows
and Lloyd’s algorithm. Experimental results on Berke-
ley dataset demonstrate that our algorithm outperforms the
state-of-the-art methods, and that the running time of the
algorithm is comparable with that of TurboPixels.
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